
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 8: Classification and Regression Algorithms I

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my 

Office: A1-432 

Office hour: 2pm-4pm Mon & Thur



Outlines

¡ Linear Regression

¡ Logistic Regression

¡ Neural Networks

¡ Support Vector Machines

¡ Machine Learning Related Issues

1



LINEAR REGRESSION

2



Data Representation

¡ For a given dataset, we usually use 𝑥 to represent the features and 𝑦 to represent the label. For the 
𝑖th sample:

𝒙! = 𝑥"
! , 𝑥#

! , 𝑥$
! , … , 𝑥%

! &
∈ ℝ%

𝑦! ∈ ℝ
¡ A dataset can be represented as:

𝑋 = 𝒙", 𝒙#, 𝒙$, … , 𝒙' ∈ ℝ'×%
𝒚 = 𝑦", 𝑦#, 𝑦$, … , 𝑦' ∈ ℝ'

¡ ℝ is the domain of real number, 𝑑 is the feature dimension and 𝑛 is the number of samples. 
¡ We use bold font to represent vector, and uppercase letter to represent matrix.

¡ 𝑥! is the ith feature in 𝒙, while 𝒙! is the 𝑖th sample in 𝑋.

3



Linear Regression

¡ Linear regression model can be represented by
𝑓 𝒙 = 𝒘!𝒙 + 𝑏

= 𝑤"𝑥" + 𝑤#𝑥# +⋯+𝑤$𝑥% + 𝑏

¡ 𝒘 is called the model weights or coefficients, and 𝑏 is called the 
bias or intercept. Together they are called the model parameters.

¡ The goal of linear regression is to find 𝑤 and 𝑏 such that the 
following cost function (aka loss function) is minimized:

𝐽 =
1
𝑛-
&'"

(

𝑓 𝑥& − 𝑦& #

¡ This cost function is also known as the Mean Squared Error (MSE) 
function.

4

Image source: https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a

https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a


Gradient Descend

¡ The gradient vector is orthogonal to the tangent of a
plane towards the greater value.

¡ Thus, the direction of negative gradient heads to the 
local minimum.

¡ We can update our model parameter by iteratively 
adding the negative gradient.

5

Image source: https://en.wikipedia.org/wiki/Gradient_descent

https://en.wikipedia.org/wiki/Gradient_descent


Gradient Descent

¡ To solve this minimization problem, we calculate its partial
derivatives:

𝜕𝐽
𝜕𝑤&

=
2
𝑛-
&'"

(

𝑓 𝑥& − 𝑦& 𝑥&

𝜕𝐽
𝜕𝑏 =

2
𝑛-
&'"

(

𝑓 𝑥& − 𝑦&

¡ Putting partial derivatives together in a vector is the 
gradient ∇𝐽(𝒘).

¡ Thus, the model weights can be iteratively updated by:
𝒘 ← 𝒘− 𝜂∇𝐽(𝒘)

𝑏 ← 𝑏 − 𝜂
𝜕𝐽
𝜕𝑏

6

Image source: https://www.kdnuggets.com/2018/06/intuitive-introduction-gradient-descent.html

The cost function is convex such 
that gradient descent is able to 

find the global minimum

https://www.kdnuggets.com/2018/06/intuitive-introduction-gradient-descent.html


Learning Rate

¡ In the above updating formula, The size of these 
steps 𝜂 is called the learning rate.
¡ With a high learning rate, we can go with large step, but 

we risk overshooting the lowest point and resulting in
non-convergence. 

¡ With a very low learning rate, we can confidently move 
in the right direction, but calculating the gradient is time-
consuming, so it will take us a very long time to get to 
the bottom.

¡ One strategy is to decrease the learning rate
gradually on iteration.

7



Advantages and Disadvantages

¡ Advantages:
¡ The modeling speed is fast, does not require very complicated calculations, and runs fast when the 

amount of data is large. 

¡ The understanding and interpretation of each variable can be given according to the model weight.

¡ Disadvantages:
¡ Non-linear data cannot be well fitted. So you need to first determine whether the variables are 

linear. In real application, the target is seldomly linear with the features.

8



MLlib API

¡ Commonly used hyperparameters:
¡ maxIter: max number of iterations (>= 0).

¡ tol: the convergence tolerance for iterative algorithms (>= 0).

¡ regParam: regularization parameter (>= 0).

¡ elasticNetParam: the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an 
L2 penalty. For alpha = 1, it is an L1 penalty.

9

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.regression.LinearRegression

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html


LIBSVM Data Format

¡ LIBSVM data format is one of the most commonly 
used data format for machine learning.
¡ label 1:feature_1 2:feature_2 …

10

LIBSVM data format



MLlib Example

11



MLlib Example

12



LOGISTIC REGRESSION

13



Logistic Regression

¡ How can we use linear 
regression to do 
classification?

¡ The range of linear regression 
model is (−∞,+∞). 

¡ Can we map it into the range 
[0, 1]?

14

Image source: https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148


Sigmoid Function

¡ We can make a new model by using the sigmoid 
function which maps (−∞,+∞) to 0, 1 :

𝜎 𝑧 =
1

1 + 𝑒)*
while 𝑧 = 𝒘&𝒙 + 𝑏.

¡ The sigmoid function can be used to represent the 
probability of each class:

𝑃 𝑦 = 1 𝑧 = 𝜎 𝑧
𝑃 𝑦 = 0 𝑧 = 1 − 𝜎 𝑧

¡ Now, if 𝜎 𝑧 is in [0, 1]. 
¡ If 𝜎 𝑧 < 0.5, we classify 𝒙 as 0.

¡ If 𝜎 𝑧 ≥ 0.5, we classify 𝒙 as 1.

15

Image source: https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

The sigmoid function is also called logistic function

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148


Cross-Entropy Cost Function

¡ MSE is no longer suitable for measuring the error for a 
classification problem.

¡ Instead, we use cross-entropy cost function (aka log 
loss):

𝐽 𝑧 = (
− log 𝜎 𝑧! if 𝑦! = 1
− log(1 − 𝜎 𝑧! ) if 𝑦! = 0

= −𝑦! log 𝜎 𝑧! − 1 − 𝑦! log(1 − 𝜎 𝑧! )

¡ If you are interested in how this formula is derived, 
more details can be found here: 
https://peterroelants.github.io/posts/cross-entropy-
logistic/

16

𝑦 = 1 𝑦 = 0

𝜎 𝑧

https://peterroelants.github.io/posts/cross-entropy-logistic/


Derivative of the Cross-Entropy Cost Function

¡ Calculate partial derivatives:
𝜕𝐽
𝜕𝜎

=
𝜕(−𝑦 log 𝜎 − 1 − 𝑦 log(1 − 𝜎))

𝜕𝜎
=
𝑦
𝜎
+
1 − 𝑦
1 − 𝜎

=
𝜎 − 𝑦

𝜎(1 − 𝜎)

𝜕𝜎
𝜕𝑧

=
𝜕 1
1 + 𝑒)*
𝜕𝑧

=
𝑒)*

1 + 𝑒)* # = 𝜎 1 − 𝜎 .

¡ By the chain rule, we have:
𝜕𝐽
𝜕𝑧 =

𝜕𝐽
𝜕𝜎

𝜕𝜎
𝜕𝑧 =

𝜎 − 𝑦
𝜎(1 − 𝜎)𝜎 1 − 𝜎 = 𝜎 − 𝑦.

¡ Then, we can easily get 𝜕𝐽/𝜕𝑤! and 𝜕𝐽/𝜕𝑏 by using chain rule again with 𝜕𝑧/𝜕𝑤! and 𝜕𝑧/𝜕𝑏.

17



Iteration with Gradient Descend

18

Image source: https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148


Advantages and Disadvantages

¡ Advantages:
¡ Easy to implement, interpret and very efficient to train.

¡ Can be used to train extremely large dataset.

¡ Disadvantages:
¡ Sometimes too simple to capture the complex relationships between features.

¡ Does poorly with correlated features.

19



MLlib API

¡ Commonly used hyperparameters:
¡ maxIter, regParam, elasticNetParam, tol are same as linear regression.

¡ family: The name of family which is a description of the label distribution to be used in the model. 
Supported options: auto, binomial, multinomial.

¡ threshold: Threshold in binary classification prediction, in range [0, 1].

20

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegression

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html


MLlib Example

21



NEURAL NETWORKS

22



XOR Problem

¡ XOR is short for exclusive or operation:
𝑋𝑂𝑅 0, 0 = 0 𝑋𝑂𝑅 1, 1 = 0
𝑋𝑂𝑅 1, 0 = 1 𝑋𝑂𝑅 0, 1 = 1

¡ Using a linear model (a line in 2d or a plane in 3d) 
can never correctly classify the XOR problem.

23

Image source: https://blog.insightdatascience.com/a-quick-history-of-neural-nets-from-inglorious-to-incredible-46e115c38b95

https://blog.insightdatascience.com/a-quick-history-of-neural-nets-from-inglorious-to-incredible-46e115c38b95


Perceptron Model

¡ The previous linear model is also called perceptron model.

¡ This model has an input layer and an output layer.

24

𝑥"

𝑥#

1

𝑤"

𝑤#

𝑏

input layer output layer

output



Multilayer Perceptrons

¡ The hidden layer is used as the input 
of output layer.

¡ However, this model is still linear 
because 
𝑓 𝒙 = 𝑤""

($)𝑎" + 𝑤$"
($)𝑎$ + 𝑏"

($)

= 𝑤""
$ 𝑤""

" 𝑥" + 𝑤$"
" 𝑥$ + 𝑏"

"

+𝑤$"
$ 𝑤"$

" 𝑥" + 𝑤$$
" 𝑥$ + 𝑏$

"

= (… )𝑥" + (… )𝑥$ + 𝑏

25

𝑥"

𝑥#

1

𝑤!!
(!)

𝑏!
(!)

input layer hidden layer

output

𝑤!$
(!)

𝑤$!
(!)

𝑤$$
(!)

𝑏$
(!)

𝑎"

𝑎#

1

output layer

𝑏!
($)

𝑤!!
($)

𝑤$!
($)

𝑓

a neuron or perceptron



Non-Linearity

¡ For the output of each layer, we add an function to make it non-linear. This function 
is called activation function.

¡ Activation function is required to be derivable such that it will not influence the use 
of gradient descend.

¡ We can use sigmoid function as the activation function.

𝜎 𝑧 =
1

1 + 𝑒;<
¡ The alternatives are tanh and ReLU, which are commonly adopted in deep neural 

networks.

26



Non-Linearity

¡ Thus, we have:

𝑎" = 𝜎 𝑤""
" 𝑥" + 𝑤#"

" 𝑥# + 𝑏"
"

𝑎# = 𝜎 𝑤#"
" 𝑥" + 𝑤##

" 𝑥# + 𝑏#
"

𝑓 𝒙 = 𝜎 𝑤""
# 𝑎" + 𝑤#"

# 𝑎# + 𝑏"
# .

27

𝑥"

𝑥#

1

𝑤!!
(!)

𝑏!
(!)

input layer hidden layer

output

𝑤!$
(!)

𝑤$!
(!)

𝑤$$
(!)

𝑏$
(!)

𝑎"

𝑎#

1

output layer

𝑏!
($)

𝑤!!
($)

𝑤$!
($)

𝑓



Non-Linearity

28

Image source: https://kseow.com/nn

https://kseow.com/nn


Backpropagation

¡ We feedfoward the information 
from one layer to another layer, 
to produce an output. 

¡ We pass the errors backwards 
so the network can learn by 
adjusting the weights of the 
network. 
¡ Backpropagation stands 

for backward propagation of 
errors.

29

Image source: https://www.kaggle.com/romaintha/an-introduction-to-backpropagation

𝑓 𝐽

𝑏"
(#)

𝑤""
(#)

𝑤#"
(#)

feedforward
backpropagation

𝜕𝐽
𝜕𝑓

𝜕𝐿

𝜕𝑤""
(#) =

𝜕𝐿
𝜕𝑓

𝜕𝑓

𝜕𝑤""
(#)

𝜕𝐿

𝜕𝑤#"
(#) =

𝜕𝐿
𝜕𝑓

𝜕𝑓

𝜕𝑤#"
(#)

𝜕𝐿

𝜕𝑏"
(#) =

𝜕𝐿
𝜕𝑓

𝜕𝑓

𝜕𝑏"
(#)

https://www.kaggle.com/romaintha/an-introduction-to-backpropagation


Backpropagation

¡ Making use of the chain rule of calculus, we can express the gradient of 𝐽 with respect to the 
weights and biases as.

¡ For a multilayer perceptron model with one hidden layer. 

¡ 𝑤!&
(") is the weight connecting the 𝑖th feature in the input layer and the 𝑗th neuron in the hidden layer.

¡ 𝑤!&
($) is the weight connecting the 𝑖th neuron in the hidden layer and the 𝑗th neuron in the output layer.

𝜕𝐽

𝜕𝑤&+
(#) =

𝜕𝐿
𝜕𝑓

𝜕𝑓

𝜕𝑤&+
(#)

𝜕𝐽

𝜕𝑤&+
(") =

𝜕𝐿
𝜕𝑓

𝜕𝑓

𝜕𝑤&+
(") =

𝜕𝐿
𝜕𝑓

𝜕𝑓
𝜕𝑎&

𝜕𝑎&
𝜕𝑤&+

(")

30



Multiclass Classification by Neural Networks

¡ For a binary classification problem, only one neuron in the output layer is enough.
¡ It generates the probability of 0/1.

¡ For multiclass classification, we may have multiple neurons in the output layer. Each 
of them generates a score of one class.
¡ Then we take the one with maximum score as the predicted class.

¡ However, the maximum operator is not derivable.

31



Softmax Function

¡ The softmax function is calculated by:

𝑃 𝑦 = 𝑖|𝒙 =
exp(𝑝&)

∑+'", exp(𝑝+)

¡ 𝑝! is the score of the 𝑖th class. They are called 
the logits.

¡ E.g. 𝑝& = 𝑤"&
# 𝑎" + 𝑤#&

# 𝑎# + 𝑏&
# for the 

previous example.

¡ When there are only two classes, softmax
function reduces to sigmoid function.

32

𝑝" = 2.0

𝑝# = 1.0

𝑝% = 0.1

exp(𝑝&)
∑+'", exp(𝑝+)

𝑃 𝑦 = 1|𝒙 = 0.7

𝑃 𝑦 = 2|𝒙 = 0.2

𝑃 𝑦 = 3|𝒙 = 0.1

logits softmax probabilities



Advantages and Disadvantages

¡ Advantages:
¡ Can handle extremely complex tasks, e.g. image recognition.

¡ It has the ability to learn any non-linear functions, if the network is deep enough.

¡ Disadvantages:
¡ Difficult to interpret. The model is like a black box.

¡ Very high demand of computational resources.

¡ There is no specific rule for determining the structure of artificial neural networks. The appropriate 
network structure is achieved through experience and trial and error.

33



MLlib API

¡ Each layer has sigmoid activation function, output layer has softmax.

¡ Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of 
labels.

¡ Commonly used hyperparameters:

¡ layers: Sizes of layers from input layer to output layer E.g., [780, 100, 10] means 780 inputs, one hidden layer with 100 
neurons and output layer of 10 neurons.

¡ blockSize: Block size for stacking input data in matrices. Data is stacked within partitions. Recommended size is between 10 
and 1000, default is 128.

¡ stepSize: Step size to be used for each iteration of optimization (>= 0).

34

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.classification.MultilayerPerceptronClassifier

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html


MLlib Example

35



SUPPORT VECTOR MACHINES

36



Optimal Classification Hyperplane

¡ For the same training data, we may find several different
classification hyperplane that has the same error rate.
¡ They have the same training error, but when given unknown test 

data, the test error is different.

¡ Is there a criterion to select the best hyperplane, such that 
it has highest probability to correctly classify the unknown 
test data?

37

Image source: https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c

https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c


Optimal Classification Hyperplane

¡ One criterion is to maximize the margin between the 
hyperplane and the nearest samples.

¡ A classification model with such optimal hyperplane 
will have good generalization ability.
¡ A model with poor generalization ability performs well on 

the training data but poorly on the test data.

¡ A model with good generalization ability performs well on 
both the training data and the test data.

38

Image source: https://dimensionless.in/introduction-to-svm/

https://dimensionless.in/introduction-to-svm/


SVM Optimization

¡ The hyperplane can be represented as 𝒘'𝒙 + 𝑏 = 0.
¡ The optimization of maximizing margin can be derived as:

min
𝒘,*

1
2
𝒘 $

𝑠. 𝑡. 𝑦! 𝒘'𝒙! + 𝑏 ≥ 1
for 𝑖 = 1,… , 𝑛

where 𝒘 $ = 𝑤"$ + 𝑤$$ +⋯+𝑤+$.
¡ 𝑦! needs to be converted to +1/-1 from 1/0.
¡ This is a quadratic programming problem.
¡ However, it the training data is not linear separable, we will not be able

to find a hyperplane satisfying the condition.

39

Image source: https://www.researchgate.net/profile/Victor_Suarez-Paniagua/publication/334643403/figure/fig5/AS:783985462484992@1563928108122/An-SVM-separating-two-classes-by-an-hyperplane-wx-b-0.png



Soft Margin SVM

¡ For every data point 𝒙I, we introduce a slack 
variable 𝜉I. 

¡ The value of 𝜉I is the distance of 𝒙I from 
its corresponding class’s margin if 𝒙I is on the 
wrong side of the margin, otherwise zero. 

¡ The points that are far away from the margin on 
the wrong side would get more penalty.

40

Image source: https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe


Soft Margin SVM

¡ The optimization of maximizing margin can be modified to the soft 
margin version:

min
𝒘,/

1
2 𝒘 # + 𝐶-

&'"

(

𝜉&

𝑠. 𝑡. 𝑦& 𝒘!𝒙& + 𝑏 ≥ 1 − 𝜉&
𝜉&≥ 0
for 𝑖 = 1,… , 𝑛

¡ 𝐶 is a hyperparameter that decides the trade-off between 
maximizing the margin and minimizing the mistakes.
¡ Small 𝐶 gives less importance to classification mistakes and focuses more 

on maximizing the margin.
¡ Large 𝐶 focuses more on avoiding misclassification at the expense of 

keeping the margin small.

41

Image source: https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe


Kernel SVM

¡ The previous version of SVM is still a linear model.

¡ It will never correctly classifies the data like this.

42

Image source: https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe


Kernel SVM

¡ The previous optimization problem is solved with Lagrange multiplier. Its dual optimization 
problem is:

max
,

<
!-"

.

𝛼! −
1
2
<
!,&-"

.

𝛼!𝛼&𝑦!𝑦& 𝒙! , 𝒙𝒋

𝑠. 𝑡. 0 ≤ 𝛼! ≤ 𝐶, for 𝑖 = 1,… , 𝑛

<
!-"

.

𝛼! 𝑦! = 0

¡ 𝒙! , 𝒙" is the inner product between the 𝑖th and 𝑗th sample, also called the linear kernel.

¡ Replacing 𝒙! , 𝒙" to a kernel function 𝐾(𝒙! , 𝒙") will produce non-linear hyperplane.

43



44

Image source: https://www.datasciencecentral.com/profiles/blogs/implementing-a-soft-margin-kernelized-support-vector-machine

https://www.datasciencecentral.com/profiles/blogs/implementing-a-soft-margin-kernelized-support-vector-machine


Support Vector Regression

¡ Use the same idea as SVM.

¡ The goal is to find a function 𝑓(𝑥) that has at most 𝜀
deviation from the actually obtained targets 𝑦! for all the 
training data, and at the same time is as flat as possible.

min
𝒘,/

1
2 𝒘 # + 𝐶-

&'"

(

(𝜉& + 𝜉&∗)

𝑠. 𝑡. 𝑦& − 𝒘!𝒙& + 𝑏 ≤ 𝜀 + 𝜉&
𝒘!𝒙& + 𝑏 − 𝑦& ≤ 𝜀 + 𝜉&∗
𝜉& , 𝜉&∗ ≥ 0

¡ It is also called 𝜀-SVR.

45

Image source: https://medium.com/coinmonks/support-vector-regression-or-svr-8eb3acf6d0ff

https://medium.com/coinmonks/support-vector-regression-or-svr-8eb3acf6d0ff


Advantages and Disadvantages

¡ Advantages:
¡ SVM works relatively well when there is clear margin of separation between classes.

¡ With kernel trick, SVM is able to capture complex feature relationship.

¡ Disadvantages:
¡ SVM algorithm is not suitable for large data sets. Training is very time-consuming.

¡ SVM does not perform very well, when the data set has more noise i.e. target classes are 
overlapping.

¡ No probabilistic explanation for the classification.

46



MLlib

¡ MLlib only supports simple linear SVM.

¡ Kernel SVM and SVR are not supported in MLlib.

47

Source: https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-support-vector-machine

https://spark.apache.org/docs/latest/ml-classification-regression.html


MACHINE LEARNING RELATED ISSUES

48



Overfitting

¡ Is a model the more complex the 
better?

¡ No. It will overfit to the training 
data and perform poorly on the test 
data.
¡ Too complex to be generalized.

49

Image source: https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf


Overfitting

¡ As we increse the model complexity 
(e.g. add a bunch of hidden layers to 
neural networks), the training error 
will decrease, but the test error will 
increase.

50

Image source: https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models

https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models


Regularization

¡ One solution it to control the model complexity by regularization.

¡ Add regularization panelty to the cost function.

¡ Take linear regression as an example:

𝐽 =
1
𝑛
6
IUV

W

𝒘X𝒙I − 𝑦I Y + 𝜆 𝒘 Y

¡ The model complexity is measure by 𝒘 Y, aka 𝑙Y regularization. 𝜆 is a trade-off 
hyperparameter to balance the model accuracy and complexity.

51



Conclusion

After this lecture, you should know:
¡ What is linear and non-linear models.

¡ What is gradient descent.

¡ How to use gradient descent to update the model.

¡ What are the advantages and disadvantages of each model.

52



Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

53


